Transactions
Token Transfers
Tokens
Internal Transactions
Coin Balance History
Logs
Code
Read Contract
Write Contract
- Contract name:
- EarnPool
- Optimization enabled
- false
- Compiler version
- v0.8.17+commit.8df45f5f
- Verified at
- 2023-09-22 04:55:32.364200Z
contracts/EarnPool.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import "@openzeppelin/contracts/utils/cryptography/SignatureChecker.sol";
contract EarnPool is Ownable {
mapping(IERC20 => bool) public points;
event PointAdded(address point, uint256 amount);
event PointEarned(address point, address earner, uint256 amount);
modifier onlyPoint(IERC20 point) {
require(points[point], "Point doest not exists");
_;
}
modifier enoughPoint(IERC20 point, uint256 amount) {
require(
point.balanceOf(address(this)) >= amount,
"Insufficient balance"
);
_;
}
function addPoint(IERC20 point, uint256 amount) external onlyOwner {
points[point] = true;
point.transferFrom(msg.sender, address(this), amount);
emit PointAdded(address(point), amount);
}
function deposit(IERC20 point, uint256 amount) external onlyPoint(point) {
point.transferFrom(msg.sender, address(this), amount);
emit PointAdded(address(point), amount);
}
function removePoint(
IERC20 point,
uint256 amount
) external onlyOwner onlyPoint(point) enoughPoint(point, amount) {
point.transfer(msg.sender, amount);
}
function earn(
IERC20 point,
uint256 amount,
uint256 deadline,
bytes memory signature
) public onlyPoint(point) enoughPoint(point, amount) {
require(
valid(msg.sender, address(point), amount, deadline, signature),
"Invalid signature"
);
require(block.timestamp < deadline, "Expired signature");
point.transfer(msg.sender, amount);
emit PointEarned(address(point), msg.sender, amount);
}
function valid(
address user,
address point,
uint256 amount,
uint256 deadline,
bytes memory signature
) public view returns (bool) {
bytes32 hashed = hash(user, point, amount, deadline);
return SignatureChecker.isValidSignatureNow(owner(), hashed, signature);
}
function hash(
address user,
address point,
uint256 amount,
uint256 deadline
) public pure returns (bytes32) {
return
ECDSA.toEthSignedMessageHash(
keccak256(abi.encodePacked(user, point, amount, deadline))
);
}
}
@openzeppelin/contracts/access/Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
@openzeppelin/contracts/interfaces/IERC1271.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (interfaces/IERC1271.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC1271 standard signature validation method for
* contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
*
* _Available since v4.1._
*/
interface IERC1271 {
/**
* @dev Should return whether the signature provided is valid for the provided data
* @param hash Hash of the data to be signed
* @param signature Signature byte array associated with _data
*/
function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
}
@openzeppelin/contracts/token/ERC20/IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
@openzeppelin/contracts/utils/Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
@openzeppelin/contracts/utils/Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
@openzeppelin/contracts/utils/cryptography/ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.0;
import "../Strings.sol";
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV // Deprecated in v4.8
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature` or error string. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*
* _Available since v4.2._
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, "\x19Ethereum Signed Message:\n32")
mstore(0x1c, hash)
message := keccak256(0x00, 0x3c)
}
}
/**
* @dev Returns an Ethereum Signed Message, created from `s`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
}
/**
* @dev Returns an Ethereum Signed Typed Data, created from a
* `domainSeparator` and a `structHash`. This produces hash corresponding
* to the one signed with the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
* JSON-RPC method as part of EIP-712.
*
* See {recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(ptr, "\x19\x01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
data := keccak256(ptr, 0x42)
}
}
/**
* @dev Returns an Ethereum Signed Data with intended validator, created from a
* `validator` and `data` according to the version 0 of EIP-191.
*
* See {recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x00", validator, data));
}
}
@openzeppelin/contracts/utils/cryptography/SignatureChecker.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/SignatureChecker.sol)
pragma solidity ^0.8.0;
import "./ECDSA.sol";
import "../../interfaces/IERC1271.sol";
/**
* @dev Signature verification helper that can be used instead of `ECDSA.recover` to seamlessly support both ECDSA
* signatures from externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets like
* Argent and Gnosis Safe.
*
* _Available since v4.1._
*/
library SignatureChecker {
/**
* @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the
* signature is validated against that smart contract using ERC1271, otherwise it's validated using `ECDSA.recover`.
*
* NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
* change through time. It could return true at block N and false at block N+1 (or the opposite).
*/
function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature) internal view returns (bool) {
(address recovered, ECDSA.RecoverError error) = ECDSA.tryRecover(hash, signature);
return
(error == ECDSA.RecoverError.NoError && recovered == signer) ||
isValidERC1271SignatureNow(signer, hash, signature);
}
/**
* @dev Checks if a signature is valid for a given signer and data hash. The signature is validated
* against the signer smart contract using ERC1271.
*
* NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
* change through time. It could return true at block N and false at block N+1 (or the opposite).
*/
function isValidERC1271SignatureNow(
address signer,
bytes32 hash,
bytes memory signature
) internal view returns (bool) {
(bool success, bytes memory result) = signer.staticcall(
abi.encodeWithSelector(IERC1271.isValidSignature.selector, hash, signature)
);
return (success &&
result.length >= 32 &&
abi.decode(result, (bytes32)) == bytes32(IERC1271.isValidSignature.selector));
}
}
@openzeppelin/contracts/utils/math/Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
@openzeppelin/contracts/utils/math/SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
Contract ABI
[{"type":"event","name":"OwnershipTransferred","inputs":[{"type":"address","name":"previousOwner","internalType":"address","indexed":true},{"type":"address","name":"newOwner","internalType":"address","indexed":true}],"anonymous":false},{"type":"event","name":"PointAdded","inputs":[{"type":"address","name":"point","internalType":"address","indexed":false},{"type":"uint256","name":"amount","internalType":"uint256","indexed":false}],"anonymous":false},{"type":"event","name":"PointEarned","inputs":[{"type":"address","name":"point","internalType":"address","indexed":false},{"type":"address","name":"earner","internalType":"address","indexed":false},{"type":"uint256","name":"amount","internalType":"uint256","indexed":false}],"anonymous":false},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"addPoint","inputs":[{"type":"address","name":"point","internalType":"contract IERC20"},{"type":"uint256","name":"amount","internalType":"uint256"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"deposit","inputs":[{"type":"address","name":"point","internalType":"contract IERC20"},{"type":"uint256","name":"amount","internalType":"uint256"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"earn","inputs":[{"type":"address","name":"point","internalType":"contract IERC20"},{"type":"uint256","name":"amount","internalType":"uint256"},{"type":"uint256","name":"deadline","internalType":"uint256"},{"type":"bytes","name":"signature","internalType":"bytes"}]},{"type":"function","stateMutability":"pure","outputs":[{"type":"bytes32","name":"","internalType":"bytes32"}],"name":"hash","inputs":[{"type":"address","name":"user","internalType":"address"},{"type":"address","name":"point","internalType":"address"},{"type":"uint256","name":"amount","internalType":"uint256"},{"type":"uint256","name":"deadline","internalType":"uint256"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"owner","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"bool","name":"","internalType":"bool"}],"name":"points","inputs":[{"type":"address","name":"","internalType":"contract IERC20"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"removePoint","inputs":[{"type":"address","name":"point","internalType":"contract IERC20"},{"type":"uint256","name":"amount","internalType":"uint256"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"renounceOwnership","inputs":[]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"transferOwnership","inputs":[{"type":"address","name":"newOwner","internalType":"address"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"bool","name":"","internalType":"bool"}],"name":"valid","inputs":[{"type":"address","name":"user","internalType":"address"},{"type":"address","name":"point","internalType":"address"},{"type":"uint256","name":"amount","internalType":"uint256"},{"type":"uint256","name":"deadline","internalType":"uint256"},{"type":"bytes","name":"signature","internalType":"bytes"}]}]
Deployed ByteCode
0x608060405234801561001057600080fd5b506004361061009e5760003560e01c8063a813958111610066578063a813958114610133578063cfc912a51461014f578063d7f299761461017f578063e72be22c1461019b578063f2fde38b146101cb5761009e565b8063358b8166146100a357806343d6c46a146100d357806347e7ef24146100ef578063715018a61461010b5780638da5cb5b14610115575b600080fd5b6100bd60048036038101906100b89190610f1f565b6101e7565b6040516100ca9190610f67565b60405180910390f35b6100ed60048036038101906100e891906110fe565b610207565b005b61010960048036038101906101049190611181565b6104a3565b005b6101136105ef565b005b61011d610603565b60405161012a91906111d0565b60405180910390f35b61014d60048036038101906101489190611181565b61062c565b005b61016960048036038101906101649190611217565b610805565b6040516101769190611297565b60405180910390f35b61019960048036038101906101949190611181565b610846565b005b6101b560048036038101906101b091906112b2565b610963565b6040516101c29190610f67565b60405180910390f35b6101e560048036038101906101e09190611349565b610992565b005b60016020528060005260406000206000915054906101000a900460ff1681565b83600160008273ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002060009054906101000a900460ff16610294576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161028b906113d3565b60405180910390fd5b8484808273ffffffffffffffffffffffffffffffffffffffff166370a08231306040518263ffffffff1660e01b81526004016102d091906111d0565b602060405180830381865afa1580156102ed573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906103119190611408565b1015610352576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161034990611481565b60405180910390fd5b61035f3388888888610963565b61039e576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610395906114ed565b60405180910390fd5b8442106103e0576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016103d790611559565b60405180910390fd5b8673ffffffffffffffffffffffffffffffffffffffff1663a9059cbb33886040518363ffffffff1660e01b815260040161041b929190611588565b6020604051808303816000875af115801561043a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061045e91906115dd565b507f531b15d5f517a783c97c6ac5456670b7e219183924715c2ff2567e437a1ee38b8733886040516104929392919061160a565b60405180910390a150505050505050565b81600160008273ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002060009054906101000a900460ff16610530576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610527906113d3565b60405180910390fd5b8273ffffffffffffffffffffffffffffffffffffffff166323b872dd3330856040518463ffffffff1660e01b815260040161056d9392919061160a565b6020604051808303816000875af115801561058c573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906105b091906115dd565b507f3f557f3956bef73d17aebc52f3c19d7b4284e4c3417c0e2766d06c74ec9a336d83836040516105e2929190611588565b60405180910390a1505050565b6105f7610a15565b6106016000610a93565b565b60008060009054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b610634610a15565b81600160008273ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002060009054906101000a900460ff166106c1576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016106b8906113d3565b60405180910390fd5b8282808273ffffffffffffffffffffffffffffffffffffffff166370a08231306040518263ffffffff1660e01b81526004016106fd91906111d0565b602060405180830381865afa15801561071a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061073e9190611408565b101561077f576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161077690611481565b60405180910390fd5b8473ffffffffffffffffffffffffffffffffffffffff1663a9059cbb33866040518363ffffffff1660e01b81526004016107ba929190611588565b6020604051808303816000875af11580156107d9573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906107fd91906115dd565b505050505050565b600061083c8585858560405160200161082194939291906116aa565b60405160208183030381529060405280519060200120610b57565b9050949350505050565b61084e610a15565b60018060008473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200190815260200160002060006101000a81548160ff0219169083151502179055508173ffffffffffffffffffffffffffffffffffffffff166323b872dd3330846040518463ffffffff1660e01b81526004016108e29392919061160a565b6020604051808303816000875af1158015610901573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061092591906115dd565b507f3f557f3956bef73d17aebc52f3c19d7b4284e4c3417c0e2766d06c74ec9a336d8282604051610957929190611588565b60405180910390a15050565b60008061097287878787610805565b905061098661097f610603565b8285610b8d565b91505095945050505050565b61099a610a15565b600073ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1603610a09576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610a009061176a565b60405180910390fd5b610a1281610a93565b50565b610a1d610c1c565b73ffffffffffffffffffffffffffffffffffffffff16610a3b610603565b73ffffffffffffffffffffffffffffffffffffffff1614610a91576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610a88906117d6565b60405180910390fd5b565b60008060009054906101000a900473ffffffffffffffffffffffffffffffffffffffff169050816000806101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b60007f19457468657265756d205369676e6564204d6573736167653a0a33320000000060005281601c52603c6000209050919050565b6000806000610b9c8585610c24565b9150915060006004811115610bb457610bb36117f6565b5b816004811115610bc757610bc66117f6565b5b148015610bff57508573ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16145b80610c115750610c10868686610c75565b5b925050509392505050565b600033905090565b6000806041835103610c655760008060006020860151925060408601519150606086015160001a9050610c5987828585610db9565b94509450505050610c6e565b60006002915091505b9250929050565b60008060008573ffffffffffffffffffffffffffffffffffffffff16631626ba7e60e01b8686604051602401610cac9291906118a4565b604051602081830303815290604052907bffffffffffffffffffffffffffffffffffffffffffffffffffffffff19166020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff8381831617835250505050604051610d169190611910565b600060405180830381855afa9150503d8060008114610d51576040519150601f19603f3d011682016040523d82523d6000602084013e610d56565b606091505b5091509150818015610d6a57506020815110155b8015610dae5750631626ba7e60e01b7bffffffffffffffffffffffffffffffffffffffffffffffffffffffff191681806020019051810190610dac9190611953565b145b925050509392505050565b6000807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08360001c1115610df4576000600391509150610e92565b600060018787878760405160008152602001604052604051610e19949392919061199c565b6020604051602081039080840390855afa158015610e3b573d6000803e3d6000fd5b505050602060405103519050600073ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1603610e8957600060019250925050610e92565b80600092509250505b94509492505050565b6000604051905090565b600080fd5b600080fd5b600073ffffffffffffffffffffffffffffffffffffffff82169050919050565b6000610eda82610eaf565b9050919050565b6000610eec82610ecf565b9050919050565b610efc81610ee1565b8114610f0757600080fd5b50565b600081359050610f1981610ef3565b92915050565b600060208284031215610f3557610f34610ea5565b5b6000610f4384828501610f0a565b91505092915050565b60008115159050919050565b610f6181610f4c565b82525050565b6000602082019050610f7c6000830184610f58565b92915050565b6000819050919050565b610f9581610f82565b8114610fa057600080fd5b50565b600081359050610fb281610f8c565b92915050565b600080fd5b600080fd5b6000601f19601f8301169050919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b61100b82610fc2565b810181811067ffffffffffffffff8211171561102a57611029610fd3565b5b80604052505050565b600061103d610e9b565b90506110498282611002565b919050565b600067ffffffffffffffff82111561106957611068610fd3565b5b61107282610fc2565b9050602081019050919050565b82818337600083830152505050565b60006110a161109c8461104e565b611033565b9050828152602081018484840111156110bd576110bc610fbd565b5b6110c884828561107f565b509392505050565b600082601f8301126110e5576110e4610fb8565b5b81356110f584826020860161108e565b91505092915050565b6000806000806080858703121561111857611117610ea5565b5b600061112687828801610f0a565b945050602061113787828801610fa3565b935050604061114887828801610fa3565b925050606085013567ffffffffffffffff81111561116957611168610eaa565b5b611175878288016110d0565b91505092959194509250565b6000806040838503121561119857611197610ea5565b5b60006111a685828601610f0a565b92505060206111b785828601610fa3565b9150509250929050565b6111ca81610ecf565b82525050565b60006020820190506111e560008301846111c1565b92915050565b6111f481610ecf565b81146111ff57600080fd5b50565b600081359050611211816111eb565b92915050565b6000806000806080858703121561123157611230610ea5565b5b600061123f87828801611202565b945050602061125087828801611202565b935050604061126187828801610fa3565b925050606061127287828801610fa3565b91505092959194509250565b6000819050919050565b6112918161127e565b82525050565b60006020820190506112ac6000830184611288565b92915050565b600080600080600060a086880312156112ce576112cd610ea5565b5b60006112dc88828901611202565b95505060206112ed88828901611202565b94505060406112fe88828901610fa3565b935050606061130f88828901610fa3565b925050608086013567ffffffffffffffff8111156113305761132f610eaa565b5b61133c888289016110d0565b9150509295509295909350565b60006020828403121561135f5761135e610ea5565b5b600061136d84828501611202565b91505092915050565b600082825260208201905092915050565b7f506f696e7420646f657374206e6f742065786973747300000000000000000000600082015250565b60006113bd601683611376565b91506113c882611387565b602082019050919050565b600060208201905081810360008301526113ec816113b0565b9050919050565b60008151905061140281610f8c565b92915050565b60006020828403121561141e5761141d610ea5565b5b600061142c848285016113f3565b91505092915050565b7f496e73756666696369656e742062616c616e6365000000000000000000000000600082015250565b600061146b601483611376565b915061147682611435565b602082019050919050565b6000602082019050818103600083015261149a8161145e565b9050919050565b7f496e76616c6964207369676e6174757265000000000000000000000000000000600082015250565b60006114d7601183611376565b91506114e2826114a1565b602082019050919050565b60006020820190508181036000830152611506816114ca565b9050919050565b7f45787069726564207369676e6174757265000000000000000000000000000000600082015250565b6000611543601183611376565b915061154e8261150d565b602082019050919050565b6000602082019050818103600083015261157281611536565b9050919050565b61158281610f82565b82525050565b600060408201905061159d60008301856111c1565b6115aa6020830184611579565b9392505050565b6115ba81610f4c565b81146115c557600080fd5b50565b6000815190506115d7816115b1565b92915050565b6000602082840312156115f3576115f2610ea5565b5b6000611601848285016115c8565b91505092915050565b600060608201905061161f60008301866111c1565b61162c60208301856111c1565b6116396040830184611579565b949350505050565b60008160601b9050919050565b600061165982611641565b9050919050565b600061166b8261164e565b9050919050565b61168361167e82610ecf565b611660565b82525050565b6000819050919050565b6116a461169f82610f82565b611689565b82525050565b60006116b68287611672565b6014820191506116c68286611672565b6014820191506116d68285611693565b6020820191506116e68284611693565b60208201915081905095945050505050565b7f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160008201527f6464726573730000000000000000000000000000000000000000000000000000602082015250565b6000611754602683611376565b915061175f826116f8565b604082019050919050565b6000602082019050818103600083015261178381611747565b9050919050565b7f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e6572600082015250565b60006117c0602083611376565b91506117cb8261178a565b602082019050919050565b600060208201905081810360008301526117ef816117b3565b9050919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b600081519050919050565b600082825260208201905092915050565b60005b8381101561185f578082015181840152602081019050611844565b60008484015250505050565b600061187682611825565b6118808185611830565b9350611890818560208601611841565b61189981610fc2565b840191505092915050565b60006040820190506118b96000830185611288565b81810360208301526118cb818461186b565b90509392505050565b600081905092915050565b60006118ea82611825565b6118f481856118d4565b9350611904818560208601611841565b80840191505092915050565b600061191c82846118df565b915081905092915050565b6119308161127e565b811461193b57600080fd5b50565b60008151905061194d81611927565b92915050565b60006020828403121561196957611968610ea5565b5b60006119778482850161193e565b91505092915050565b600060ff82169050919050565b61199681611980565b82525050565b60006080820190506119b16000830187611288565b6119be602083018661198d565b6119cb6040830185611288565b6119d86060830184611288565b9594505050505056fea264697066735822122086a20a6fa60768983eae5115cfa0e23d154f6ab9b0acbe2d344a555ea15dd5e464736f6c63430008110033